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Block 20 continued:

translational and rotational velocities that in combination with the Brightness-
Change Constraint Equation solves the general motion vision problem, arbitrary
motion with respect to an arbitrary rigid environment.

Avoiding correspondence and optical flow has been the motivation behind the
direct methods because both solving the correspondence problem, and computing
the optical flow reliably, have proven to be rather difficult and computationally
expensive.

Recently direct motion vision methods, which directly use the image brightness
information such as temporal and spatial brightness gradients directly, have used
the Brightness-Change Constraint Equation for solving the motion vision problem
in special cases such as Known Depth, Pure Translation or Known Rotation, pure
Rotation, Planar World and Quadratic Patches. In contrast to these solutions,
our fixation method does not put such severe restrictions on the motion or the
environment.
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1 INTRODUCTION

In motion vision, the goal is to recover, from time varying images, the
relative motion between a viewer and an environment as well as the structure
of objects in the environment. A survey of previous literatures on machine
vision is given by Barron [10]. Some of the current issues in image flow theory
and motion vision are discussed by Waxman & Wohn [32] and Aloimonos &
Shulman [4]. Much of the earlier work on recovering motion has been based
on either establishing correspondences between the images of prominent fea-
tures (points, lines, contours, and so on) in an image sequence (for example.
Prazdny [27j, Ullman [30, 31j, Longuet-Higgins [19], and Aloimonos & Basu
[2]) or establishing the velocity of points over the whole image, commonly
referred to as the optical flow (for example, Ballard & Kimball [5], Bruss &
Horn [11], and Adiv [1]).

In general, identifying features here means determining gray-level corners.
For images of smooth objects, it is difficult to find good features or corners.
Further, the correspondence problem has to be solved, that is, feature points
from consecutive frames have to be matched.

The computation of the local flow field exploits a constraint equation
between the local brightness changes and the two components of the ortical
flow. This only gives the components of flow in the direction of the brightncss
gradient. To compute the full flow field, one needs additional constraints such
as the heuristic assumption that the flow field is locally smooth (Hildreth [14],
and Horn & Schunck [15]). This leads to an estimated optical flow field that
is not the same as the true motion field.

Both solving the correspondence problem, and computing optical flow
reliably, have proven to be rather difficult and computationally expensive.
This has motivated the investigation of direct methods which use the image
brightness information directly to recover motion.

Recently direct motion vision methods have used the Brightness-Change
Constraint Equation (BCCE) for solving the motion vision problem in special
cases such as Known Depth [15], Pure Translation or Known Rotation [17.
24, 16], Pure Rotation [17], Planar World [23] and Quadratic Patches [22]. In
this work, a method called fixation has been introduced which in combination
with the brightness-change constraint equation solves the direct motion vision
problem of arbitrary motion with respect to an arbitrary rigid environment.
That is, it recovers the shape, rotational velocity and translational velocity
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in the general case. In contrast to the tracking methods presented in [3, 9,
28, 29], our fixation method is not only different but also is general. For
example, Aloimonos & Tsakiris [3] propose a method for tracking a target
of known shape. Badopadhay, Chandra & Ballard [9] use optical flow for
tracking. Sadini & Tistarelli [29] do tracking for the special case in which
the component of rotational velocity along the optical axis is zero.

A block diagram of the ideas behind this work is shown in figure 1. We

lInitial I0 f (t)
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Figure 1: A block diagram of the fixation method modules.

start with a brief review of the BCCE in section 2. Then in section 3, we

show that by choosing an interest point in the environment. R, and knowing
the component of rotational velocity along the position vector associated

with ghat interest point. Ro, we can obtain a Fixation Constraint Equation
(FCE) between the rotational velocity w and the translational velocity t just

b keeping the image of the interest point stationary in the image plane.
Section 4 shows how the fixation constraint equation can be combined with
the BCCE and applied to fixated images in order to find t. w and depth Z in
the general case. Recovering ,R., needed in the fixation constraint equation.
and finding the components of fixation velocity, u,, and V,o. necessary for
obtaining a fixated 2nd image. are discussed in section .5. In order to apply

the fixation constraint equation, a sequence of two fixated images is needed.
Initial 1st image can be used directly and section 6 shows how a fixated 2nd
image is obtained from the initial 2nd image.
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2 THE BRIGHTNESS CHANGE CONSTRAINT EQUATION

Using a viewer-based coordinate system which is adopted from Longuet-
Higgins and Prazdny [18] is very common in direct motion vision. Figure 2
depicts the coordinate system under consideration.

In this coordinate system, a world point

R= (X Y Z)T (1)

is imaged at
r = (x y 1)T.  (2)

Y'

Projection Center.... 0

Principal 1oi

z Image Plane

Figure 2: The viewer-centered coordinate system. The translational velocity
of the camera is t = (U V IV)T, and its rotational velocity is w = (A B C)T.

That is, the image plane has the equation Z = 1 or in other words the focal
length is 1. The origin is at the projection center and the Z-axis runs along
the optical axis. The X- and Y- axes are parallel to the x- and y- axes of
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the image plane. Image coordinates are measured relative to the principal
point, the point (0 0 1)T where the optical axis pierces the image plane. The
position vectors r and R are related by the perspective projection equation

r=(XY1)T = ( yZ = R. (3)

where R -i = Z and i denotes the unit vector in the Z direction.
When the observe: moves with instantaneous translational velocity t =

(U V W)T and instantaneous -otational velocity w = (A B C)T relative to
a rigid environment, then the time derivative of the vector R can be written
as

Rt-=-t -w x R. (4)

The motion of the world point R results in motion of the corresponding
image point r. It can be shown [23, 21] that the motion field in the image
plane is obtained by differentiating eqn. (3) with respect to time as

rt =d (R) - .x(Rt xr) (5)

Substituting for R, r and Rt from equations (1), (2) and (4) into eqn. (5)
gives, [18, 11]

xt -V+iw + xy (+ 1)+CY
rt= Yt -v+xw B +Ay +B(y 2 + 1) - CX (6)

0 0

This result is just the parallax equations of photogrammetry that occur in
the incremental adjustment of relative orientation [13, 20]. It shows how,
given the environment motion, the motion field can be calculated for every
image point.

Image brightness changes are primarily due to the relative motion between
an environment and an observer provided that the surfaces of the objects have
sufficient texture and the lighting condition varies slowly enough both spa-
tially and with time. In this case, brightness changes due to changing surface
orientation and changing illumination can be neglected. Consequently, we
may assume that the brightness of a small patch on a surface in the scene
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does not change during motion. Then expansion of the total derivative of
brightness E leads to

dE
d"t" = Et + xtE. + ytE = 0' (7)

which is referred to as the Brightness Change Constraint Equation (BCCE)
[15]. By substituting for Xt and yt from eqn. (6) into eqn. (7), we obtain the
brightness change constraint equation for rigid body motion [23], namely

Et + v • w + s-- =0 (8)

z
where the auxiliary vectors s and v are defined as/)

-Ev (9)
xE. + yE,

and
+E, + y(xE. + yE,,)

v= -E,, - x(xE, + yEy) .(10)
yE - xEy

Considering that s • r = 0, v • r = 0 and s. v = 0, these three vectors thus
form an orthogonal triad. The vectors s and v represent inherent properties
of the image. Also it can be shown that v = r x s. The vector s indicates
the directions in which translation of a given magnitude will contribute max-
imally to the temporal brightness change of a given picture cell. The vector
v plays a similar role for rotation.

The brightness change constraint equation is unchanged if we scale both
Z and t by the same scale factor. We conclude that we can determine only
the direction of translational velocity and the relative depth of points in the
scene. This well-known ambiguity is referred to as the scale-factor ambiguity
in motion vision.

'To account for smooth variations in the image brightness due to other factors such as
shading, spatial and temporal illumination changes, and variations in reflectance proper-
ties, the BCCE can be extended to

Et + xtEr + ytEy = mtE + ct

where in general mt and ct are time and position dependent [12, 25, 26]. For simplicity,
we have not used this extension here but we may use it for implementation.
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3 FIXATION FORMULATION

Our common visual experience suggests that fixation may play an impor-
tant role in the analysis of moving objects. When we want to understand the
motion of an object we do not keep our eyes and head stationary in front of
the moving object. Instead our head and/or eyes follow the moving object,
in order to keep the image of a point of interest stationary in the retina.
There are also some formal studies that support such observations [6, 7, 8].
Consequently in this computer vision work, the fixation is defined as:

Given two subsequent images, initial 1st and 2nd images, and a
point in the 1st image, find a sequence of two fixated images by
obtaining a new image, fixated 2nd image, such that the image
of the selected point in the new image is located at its original
position as in the initial 1st image.

As shown in figure 3, we refer to this selected image point as the fixation
point, ro, and to its corresponding point on the object as the interest point,
R.

3.1 Derivation of General Fixation Constraint Equation

In a sequence of two fixated images, at fixation point we should have

rot = 0 (11)

where rot is the time derivative of the fixation point vcctor and similar to
eqn. (5) can be written as

= (Rot x r.) (12)
Ro • i

Rot is the time derivative of the interest point vector. Combination of equa-
tions (11) and (12) shows that for fixation we need to have

i x (Rot x ro) = 0. (13)

In other words, we want to find out when Rot x ro is zero or parallel to i.
For Rot x ro to be parallel to i, we should have ro perpendicular to i which
is impossible with a finite field of view (FOV), so only Rot x ro = 0 applies.
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Yt

Interest point vector

'~ rAFixabton point vector

Jx

O Figure 3: In fixation the fixation point, the image of the interest point, is

kept stationary in the image plane despite the relative motion between the

camera and the environment.

Conclusively, considering that Ro and ro have the same direction, eqn. (13)

is simplified as
Ro ×Ro =O0 (14)

Now substituting for Ro, = -t -w x Ro, eqn. (4), into (14) gives

(wxRo)×Ro+t xRo=0. (15)

Expansion of eqn. (15) by using (a x b) × c = (c . a)b - (c. b)a results in

(R0 .w)Ro -(Ro. R0 )-,+ t x Ro 0. (16)

As long as the translational velocity t is neither zero nor parallel to the
interest point vector Ro, then any vector, including w, can be expressed in
terms of the triad of vectors Ro, t x Ro and t. So we can write w in its
general form as

wa= aRo +3(tx×Ro)±+ t (17)

o0
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where a, 3 and -y are constants to be determined. Later in this section we
will consider the special cases where t is zero or parallel to R, by defining w
based on another triad.

Substituting for w from eqn. (17) into eqn. (16) gives

[1 - /3(Ro • Ro)](t x R.) + -t(Ro. t)R - -y(Ro,. Ro,)t = 0. (18)

Now, we should find the constants 3 and 7 such that eqn. (18) holds without
putting any restrictions on Ro and t. We start by finding the dot product of
eqn. (18) by t x R. that results in

[1 - 3(Ro. R0 )]lit x R,112 = 0. (19)

Equation (19) will hold without restricting R. and t if

1
3= 1 (20)11R.11'

Another possibility for satisfying eqn. (19) is to have lit x R11 = 0 which
implies that t = 0, Ro = 0 or t is parallel to Ro. But R. cannot be zero and
also we assumed that here t is neither zero nor parallel to Ro. As a result,
It x R.11 cannot be zero. Similarly the dot product of eqn. (18) by t gives

y(R -t)(Ro. t) - 7 (Ro Ro)(t t) = 0. (21)

Knowing that (a x b) • (c x d) = (c. a)(b. d) - (d. a)(b • c), eqn. (21) can
be simplified as

7lit x Ro[[2 = 0. (22)

We discussed that lit x Roll cannot be zero here, so eqn. (22) is satisfied only
if -f is zero

Y= O. (23)

Substituting for 3 from eqn. (20) and -y from eqn. (23) into eqn. (17)
gives

1
w = oR. + -R o (t x R.) (24)

where a is still unknown. This means that the compunent of the rotational
velocity along R. cannot be determined by the fixation formulation. Physi-
cally this makes sense because the rotational velocity along R. denoted by
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WRo, does not move the fixation point. This observation leads us to find WRo
in a separate step before using the fixation formulation results. Derivation
of WR° will be shown in section 5. Finally the general fixation constraint
equation (GFCE) is written as

W = WR.R. + H0-1-(t x Ro) (25)

where t is the translational velocity and t. = f. is the unit vector along the
position vector of an arbitrary fixation point, a point in the image chosen for
fixation.

3.2 Derivation of Special Fixation Constraint Equation

When the translational velocity t is zero or parallel to the interest point
vector R., eqn. (16) is simplified as

(Ro.w)R 0 - (R.- R,)w = 0. (26)

We define w based on the triad consisting of vectors Ro. 5. and 5 x Ro as

w =/R. + m(* x Ro) + nR (27)

where 1, m, and n are constants to be determined. He-e we assume that R.
is not parallel to S. This is a reasonable assumption because otherwise we
should at least have a field of view of 180' to be able to choose an awkward
point of interest along the x-axis, which results in a fixation point at infinite
distance from the principal point and near the border of an infinite image
plane.

Substituting for w from eqn. (27) into eqn. (26) gives

[mRo.(* × Ro) + n(Ro.*)]Ro- m(Ro. Ro)(R x R,)- n(Ro. R)R = 0. (28)

The dot product of eqn. (28) with (: x Ro) results in

- m(Ro . Ro)I* x Ro112 = 0. (29)

Considering that R. cannot be either zero or parallel to R. eqn. (29) is
satisfied only if m is zero

m = o. (30)
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Substituting for m into eqn. (28) and finding its dot product by k results in

n(Ro. k)(R,. k) - n(R-R)(k -5c) = 0. (31)

Using (a x b). (c x d) = (c . a)(b d) - (d . a)(b. c), eqn. (31) can be written
as

nIjR x R.112 = 0. (32)

Again R. cannot be either zero or parallel to k. As a result, eqn. (32) will
hold for arbitrary Ro if n = 0. Substituting for n and m into eqn. (27) gives

w = IRo (33)

where 1 is still unknown. We can substitute wRoRo for IRo. It will be shown
later how wR. is found separately. As a result for the special cases we obtain
the special fixation constraint equation (SFCE) as

w = RRoo (34)

which means that when the translational velocity t is zero or parallel to R.
then the corresponding rotational velocity may only have a component along

Our method for deriving the SFCE, eqn. (34), is not different from what
we did for deriving the GFCE, eqn. (25). In fact, eqn. (34) is a special case
of eqn. (25). But we could not directly derive eqn. (34) from eqn. (25)
because eqn. (25) was derived based on the assumption that t is neither
zero nor parallel to R.. As a result, for implementation it is enough to use
the GFCE, eqn. (25), without knowing whether the present condition is the
special case or not.

4 SOLVING THE GENERAL DIRECT MOTION VISION PROB-
LEM

Here we assume that we are given a sequence of fixated images. In other
words we have made the fixation point stationary in our image sequence.
This can be done by finding the fixation velocity, the apparant velocity at
the fixation point in the 1st image, as given in section 5. Then the shifting
method explained in section 6 can be used for generating a new image, fixated
2nd image, in which the fixation point is located at the same position as in
the initial 1st image.
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We start by studying the general case where the translational velocity
t is neither zero nor parallel to the interest point vector Ro. Then we will
consider the special cases of t separately.

Substituting for w from the general fixation constraint equation (25) into
the brightness-change constraint equation (8) gives

1 1
Et +wR.v- + -R[v. (t X fto)] + 7(s.t) = 0. (35)

Knowing that a- (b x c) = (a x b) . c and doing some manipulations on eqn.
(35) results in

E 1 -s - -- (v x R.)] " t = 0 (36)

where E, is a notation for Et +wRoV. IA. which can be computed at any pixel.
In general, eqn. (36) can be solved numerically for t and Z using images of
any size and with any field of view (FOV). In the following, a closed form
solution is presented for the case that a small patch around the fixation point
is used or the field of view is small and the whole image is used.

We know that at the fixation point v x ft. = v, x Ro = 0. Fcr a small
field of view, the product of v x ARo will be negligible. Even for an image
with a large field of view this is still true for the image area near the fixation
point. As a result, for these cases, eqn. (36) can be written as

Et + I(0 0 (37)

which c;,n be solved similar to the pure translation case [17. 24. 16]. Questions
such as "How large can the FOV or fixation patch be to guarantee the validity
of this approximation?" can be answered by implementation results.

Considering that the depth range is finite, we can solve eqn. (37) by
minimizing

fJ Z2dxdy = (s E'f t) 2 d = J (3S)

with respect to t. In other words, we are looking for the true motion t which
minimizes the sum of squares of the depth estimates over the image of a
scene with a finite depth range. In order to avoid the trivial solution t = 0.
a con3traint such as I[tjf = 1 is put on this minimization problem. This is a
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valid constraint on t because due to the scale factor ambiguity we can only
find the direction of t. This constraint on t can be written as

tTt = 1. (39)

Moreover we can rewrite J as

j = tTMt (40)

where M is a fully computable 3 x 3 matrix

M =If( 1)2ssT dxdy. (41)

Minimizing J in eqn. (40) under the constraint eqn. (39) is an ordinary cal-
culus constrained minimization problem which can be solved by minimizing

I(t, A) = tTMt + A(1 - tTt) (42)

with respect to t and the Lagrange multiplier A. Then we will have

a'o-7 = 2Mt - 2At = 0 (43)

which is simplified as
Mt = At. (44)

Equation (44) is an eigenvalue problem where A is an eigenvalue of the known
matrix M and t is the corresponding eigenvector. Substituting Mt from
eqn. (44) into eqn. (42) gives I = A which implies that under the given
constraint tTMt is minimized when the smallest of three eigenvalues is used
for calculating the eigenvector t.

It is concluded that the fixation method can be used for solving the mo-
tion vision problem in its general case. The translational velocity t can be
calculated from eqn. (44) by using the smallest eigenvalue. Then we can use
eqn. (36) for finding the environment depth

1 (s. t) - t) (45)Et t (s
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and finally eqn. (25) gives the rotational velocity w
1

Wo = WRo + I--011 (t x R0 ). (46)

The total rotational velocity of the vehicle with respect to the environ-
ment is obtained by adding w to the equivalent rotational velocity fl given in
section 6. It can be seen that for the general case, the fixation formulation
lets us find the shape and motion parameters based on an arbitrary choice
of interest point Ro.

4.1 Special Cases: t Is Zero or Parallel to Ro

When the translational velocity t is zero, we showed that the rotational
velocity w has only a component along Ro. In this case we basically cannot
obtain any estimation for the depth Z but there are methods for finding the
rotational velocity w [17]. For the other special case where t is parallel to
Ro, we substitute for o from eqn. (34) into the BCCE eqn. (8) to obtain

El (47)t '+ =( -t

where E, is a notation for the computable value of E, + wR.V • Ro. Because
no approximation is involved in deriving eqn. (47), an exact closed form
solution exists for t and Z without a,.y restriction on the field of view or
the image size. This exact solution for finding t and Z is the same as the
solution given in the general case, starting from eqn. (38).

5 COMPUTING THE FIXATION VELOCITY AND wR°

The fixation formulation is based on the assumption that the fixation
point remains stationary in a sequence of fixated images. We use the term
fixation velocity to refer to the apparent velocity at the fixation point in
the initial 1st image. We also represent x and y components of the fixation
velocity by uo and v. respectively. The basic fixation requirement, a sequence
of two fixated images in which ro, = 0. can be satisfied by finding u. and
vo, and then using these components for obtaining a new image, fixated 2nd
image. The shifting method for obtaining the fixated 2nd image is explained
in the next section.
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We also saw that the component of the rotational velocity along R., WRo,
cannot be calculated from the fixation formulation because this component
does not move the fixation point. Here, we will introduce algorithms which
can be used for finding both wRo and the components of the fixation velocity.

If we assume that depth is approximately constant on a small patch
around the fixation point, the fixation patch, then u. and vo will be ap-
proximately constant on this patch. Possible sensitivity of this assumption
to special cases such as slanted surfaces can be checked by implementation.
Moreover the motion field velocity due to the component of the rotational
velocity of the camera with respect to the environment along Ro is given
by -(WR. x r) = -WRo(Ro x r) = _Ro(ro x r) because 1 , = r' is the

unit vector along r.. Knowing that ro = (X. yo 1)T and r = (x y 1)T, the
components of the total motion field velocity along the x and y axes, due to
fixation velocity and WR., are given by

X± = U0 - --' .(ro x r) = Uo - Ro(yo - ) (4)

Yt = v-iro'y (r xr) = v.- Ro(x -x)

where c and ' are the unit vectors along the x and y axes and CDR, is a
notation for " Substituting for xt and yt from the above equations into

the BCCE, eqn. (7), gives

[uo - Co(YO -y)]E. + [Vo - DR°(x - xo)IE + Et = 0. (49)

Due to noise, eqn. (49) does not necessarily hold for any r so we try to find
u,, vo and 6)R. by minimizing the sum of squares of errors over the fixation
patch, denoted by p. In other words we want to minimize

J[(Uo- -0 o(yo-y))Ex+(Vo-'DR(X-Xo))Ey+E2dxdy (50)

with respect to u,, v, and ;Ro which results in a system of three linear
equations which can be solved for the three unknownsEall a12  a13  uo ( I

a21 a 22 a23  t = C2  (31)
a31 a32 a33 I /R C3

Matrix A is symmetric and its elements are given by
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a 1 2 " a 21 = ffp E.Edx dy
a 13 =a 31 = -ffp E.[E.(y. - y) + Ey(x - xo)ldx dy
a23 = a 32 = -ffpE,[E(yo - y) + E(x- xo)dxdy (52)

all = ffp E.dx dy
a22 = ffp E dz dy
a33 = ffp[E.(yo - y) + Ey(x - X.)] 2ddx dy

and the elements of vector C are as follows:

ci = -ffpEtE .dxdy
c2 = -ffp EtE ,dx dy (53)

C3 = ffpEt[E.(yo -y)+ Ey(x -x)]dxdy.

Considering that the fixation point coordinates xo and yo are known, then
the sets of equations (52) and (53) show that the elements of matrix A and
vector C can be calculated easily.

In the special case where the fixation point is at the principal point,
xo = yo = 0, the aj are simplified as:

a 12 = a 21 = ffpEEvdxdy
a13 = a31 = ffpE.(yE., - xEy)dxdy
a23 = a32 = ffpE(yE - xEy)dxdy (54)

all = ffp E-dx dy
a22 = ffp E'dx dy

a33 = ffp(yEx - xEy) 2dx dy

and ci are given as follows:

Cl = -ffpEtE.dxdy

C2 = -ffp EEydx dy (55)
C3 = -ffp Et(yE, - xE,)dx dy.

After finding ,o we can easily calculate Ro as

WR CU. x+ y.2+. (56)
When the fixation point is at the principal point, -',Ro is exactly the same as

WR0
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6 OBTAINING A FIXATED 2ND IMAGE

The fixation method assumes that a sequence of two images are available
in which the fixation point is kept stationary. Referring to figure 1, we are
given two original images. The 1st original image is used directly but we
need to find a fixated 2nd image.

Physical rotation of the camera with respect to the vehicle is a hardware
solution to this problem which is basically a tracking problem. Considering
that in general the interest point has a relative motion with respect to the
vehicle, the fixated 2nd image cannot be obtained in one step. As a result, a
feedback loop is required for the camera rotation system to compensate for
the errors resulted from the new position of the fixation point. This hardware
approach is avoided not only because of the errors involved but also because
of the concern about the real time applications.

In the following we will show how a fixated 2nd image can be obtained by
applying a compensating rotation to the initial 2nd image through software.
It is assumed that the fixation velocity has been already computed, eqn. (51).
We introduce an equivalent rotational velocity Q = (QY, ~, Q,) which could
result in the same fixation velocity (uo, vo) at the fixation point (x., yo).
According to eqn. (6), the components of Q must satisfy the following set of
equations: { = XoyofX - (X2 + 1)Q + yoQ (57)

Vo = (y' + 1)0, - XoyoSI -X.

Among infinite number of Q that satisfy the system of equations (57), we
choose the only one that does not result in any rotational velocity along the
fixation point vector ro. Mathematically this means that Q = 0 which
results in the following constraint on the components of fl

X0Qr + YoQY + fl = 0. (58)

Given the fixation velocity (io. vo) and the fixation point coordinates x,, and
Yo, the equivalent rotational velocity Q is obtained by solving the combination
of three linear equations in (57) and (58). In the case that the fixation point
is at the principal point. x. = yo = 0. the equivalent rotational velocity is

= (V0 , -U.. 0). (59)
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Let's define the rotational fization velocity as

fl = QI I ) = -f. (60)

In other words fl is equal to but in opposite direction of the equivalent
rotational velocity fl given by equations (57) and (58). The 2nd fixated
image can be obtained by applying fo to the initial 2nd image. Considering
eqn. (57), the following set of equations must be satisfied in the shifting
process of the initial 2nd image

u = XyQ, 0  - (X2 + 1f2y, + y .61
V = (y 2 + 1)fQ - xyfQy° - xQ,.

Here Q,, f, , and fZ, are known, as a result the shifting vector (u, v) can
be obtained for every pixel of the initial 2nd image. The brightness at pixel
(x,y) of the fixated 2nd image is obtained by finding the brightness at the
corresponding original point (x - Tu, y - Tv) in the initial 2nd irnAge. T is
the time interval between two initial images. In general a computed original
point is not located at the center of a pixel in the initial 2nd image. As a
result, its brightness cannot be read directly from the image file and should
be computed by averaging, bilinear interpolation or bicubic interpolation of
the brightnesses at its neighboring pixels.

7 CONCLUSIONS AND FUTURE WORK

The algorithms and formulations presented in this fixation method show
how to solve the motion vision problem directly for arbitrary motion with
respect to an arbitrary rigid scene. In contrast to previous work done in the
area of motion vision, this solution is general and does not put any severe
restriction on the motion or the shape of envir.,nment. More importantly the
fixation method uses neither optical flow nor feature correspondence; instead
direct image information such as temporal and spatial brightness gradients
are used. There is no restriction on choosing the fixation point. However
using the principal point as the fixation point makes the equations more
concise and the calculations easier.

Implementation of this fixation method, which will be our next work, is
essential for supporting the feasibility of the scheme. Referring to fig. 1, we
can implement the fixation method in the following steps.



18

STEP 1: Finding the fixation velocity components (uo, Vo) and component
of rotational velocity along R., wp., by applying the system of eqn. (51) to
the direct image information from two initial images.

STEP 2: Knowing the fixation velocity components, U, and Vo, the fixated
2nd image is obtained by the shifting method explained in section 6.

STEP 3: Using the general fixation constraint equation (25), original 1st
image, and the fixated 2nd image, the method presented in section 4 can be
used for recovering the depth, the translational velocity and the rotational
velocity. Note that we had to derive the special fixation constraint equation
(34) separately, but for implementation it is enough to use just the general
fixation constraint equation (25) because eqn. (34) is a special case of eqn.
(25). As a result, the general algorithms can be used for recovering the motion
and depth, without knowing in advance whether the present condition is a
special case or not.

STEP 4: The total rotational velocity wtot is simply obtained by adding
the equivalent rotational velocity Qt, from equations (57) and (58), to the
rotational velocity wo from eqn. (46).
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